FHF prosjekt 900706:

"Sporing av laks: SNP-tilnærming"

Matthew Kent, Harald Grove, Teresa Andersstuen, Mariann Arnyasi, Kristil Sundsaasen, Sigbjørn Lien

CIGENE, Dept Animal and Aquaculture Sciences, Norwegian University of Life Sciences UMB, Ås, NORWAY

SNP marker panel development

- ca. 6,000 SNPs genotyped in 756 samples belonging to MOWI, Salmobreed and AquaGen breeding populations was analysed.
- A subset of SNPs (n=114) was identified using the following criteria:
 - > SNPs must have high minor allele frequency (MAF > 0.45) in all three breeding populations
 - 3-4 SNPs from each chromosome and a wide physical distribution
 - 3 SNPs from mitochondrial genome to provide extra assurance for female assignment

Genotyping protocol

 A panel of 60 SNPs was genotyped using Sequenom MassArray 4 instrument.

 Genotype assignment is automatic but usually requires manual inspection

 DNA extraction from fin clips has been semi-automated using a BioMek3000 robot. Process includes tissue digestion, protein – nucleotide separation, and DNA precipitation.

Genotyping protocol - Challenges

- DNA extraction is producing sufficient amounts of high quality material, however contaminant in the DNA extract seems to inhibit genotyping. This can be overcome by dilution.
- Genotyping 60 markers in a single reaction has not been robust, and the set is run as 2 separate reactions.
- "Holes" in the genotyping dataset weakens the power to assign. Missing parental genotypes is the most damaging situation.

Development of traceability tool using SNPs

Assignment principles

Assignment script looks for incorrect Mendelian inheritance (MI) patterns to eliminate impossible offspring-parent pairings. For example:

```
Offspring 1 (AA)
                                      → Possible match
Offspring 2 (AB) Parent1 (AA)
                                      → Possible match
Offspring 3 (BB)
                                         Impossible match
```

After identifying candidate parents, software considers MI patterns within all possible parent-parent-offspring to eliminate incorrect trios. For example:

Offspring 2 (AB) P1 (AA) + P2 (BB)
$$\rightarrow$$
 Possible trio P1 (AA) + P3 (AA) \rightarrow Impossible trio

Assignment software - Challenges

- An incomplete set of genotypes (ie not all 60 SNPs) can lead to offspring being (i) unassigned, (ii) assigned to 1 parent only, (iii) assigned to multiple trios
- Additional information can be used to increase certainty and reduce trio combinations. Examples of additional information are:
 - Sex of parents
 - Parental crossings (ie mating scheme)
 - Relationships between parents

Validation study 1 – many offspring, few parents

- Samples from AquaGen breeding program, selected by NVH and sent with anonymous IDs to CIGENE for assignment.
 Includes:
 - > 230 Parents
 - 520 Offspring
 - 40 unrelated offspring
- Require minimum 40 genotypes for assignment, allow 1
 Mendelian mismatch :
 - ▶ 16 offspring (2.8%) failed to produce >40 genotypes

Validation study 1 - assignment

- >230 Parents
- ≥520 Offspring
- >40 unrelated offspring

Category	Description	Number
Unique – full	Unique Assignment, valid parent couple	496
Uncertain / unrelated / missing	One parent only / no parents / insufficient genotypes	64

Assignment validation rate = 97%

Validation study 2 – Many parents, few offspring

- Samples selected by NVH and sent with anonymous IDs to CIGENE for assignment. Includes:
 - > 496 Parents
 - 279 Offspring
- Require minimum 40 genotypes for assignment, allow 1
 Mendelian mismatch:
 - > 10 offspring (3.5%) failed to produce >40 genotypes

Validation study 2 - assignment

- >496 Parents
- >279 Offspring

Category	Description	Number
Unique – couple	Unique Assignment, parent couple	185
Unique – single	Only one parent, other unknown	33
Multiple - couple	More than one valid couple	9
Uncertain / Missing	Multiple parent options and no valid couple/insufficient genotypes	52

Assignment validation rate = 98%

Validation study 3 – Wild fish

95 wild fish (5 fish x 19 rivers) provided by NINA

Category	Description	Number
Mismatch – A	Mismatches ≥ 3	87
Mismatch - B	2 Mismatches	6
Uncertain / Missing	Multiple parent options and no valid couple/insufficient genotypes	2

No wild fish assigned to known parents

Extraction protocols

 To assess issues related to practical implementation of genetic tracing, samples were stored, extracted and genotyped under different conditions.

- Variables included:
 - Tissue type (bukfinne, fettfinne, skjell)
 - Preservation Method (ethanol, red-spirit, frozen)
 - Extraction (chelex, precipitation)
 - Operator (3 sites)
- Samples genotyped with SNPs, "number of genotypes" used to represent DNA quality.

Significant effects

- Statistical analysis
 - effect of tissue, preservation, extraction, and site on # genotypes reported
 - generalized linear models with gamma distribution and identity link function
- # genotypes ranges from 1 60, mean 52, median 56

Effect of	on number of genotypes	P value
Tissue	Not significant	0,7
Preservation	Not significant	0,8
Extraction	Significant (precip gave 3.7 more genotypes than chelex)	0,018
Site	Significant (Sites A and C gave 7-8 more genotypes than B)	0,001

Site vs. #genotypes

Site and Extraction vs. #genotypes

Conclusion

- SNP based technology demonstrates good ability to assign farmed fish to their parents.
- The current SNP set has the power to differentiate wild and farmed.
- Standardization (and optimization) of the DNA extraction methodology is important.
- Further implementation of SNP-tracing would benefit from a redesign of the SNP set to include more markers and/or achieve single assay throughput.

Synergies

- Routine testing of salmon DNA using SNP technology is performed large scale today, including:
 - Sample collection,
 - sample storage,
 - DNA extraction,
 - genotyping and reporting of data
- Thoughtful design of SNP panels can create added value, ie markers can be included that not only allow for tracing, but can provide broodstock information to producers.

