

SporLaks – Industry-wide tracing of Norwegian farmed Atlantic salmon

Matthew Baranski & Celeste Jacq* (Nofima) Sten Karlsson (NINA)

Atlantic salmon production in Norway

Every year 30 000 – 40 000 broodstock used to produce 350 million fish

Project Concept:

To use DNA parentage methods to trace escaped farmed salmon back to egg batch and/or cage of origin with 100% accuracy

4 Breeding companies

10 Multipliers

~130 Hatcheries

~1000 Grow-out facilities

Using DNA markers to trace fish in aquaculture

Available online at www.sciencedirect.com

Aquaculture 250 (2005) 70-81

Aquaculture

www.elsevier.com/locate/aqua-online

Evaluation of three strategies using DNA markers for traceability in aquaculture species

Ben Hayes*, Anna K. Sonesson, Bjarne Gjerde

AKVAFORSK, Institute for Aquaculture Research, P.O. 5010, 1432 Ås, Norway

Received 14 May 2004; received in revised form 27 January 2005; accepted 2 March 2005

Simulations of the 'PAR' strategy

Fig. 5. Proportion of correct assignment decisions from strategies PAR and GRAND with increasing number of microsatellite and SNP markers.

Parentage analysis – exclusion approach

2. Det prameine mustisloarus ateleatstplealfe lealit protegring voten toadusine it had a potentifal poffspring

Multiplex PCR

- Amplify a 'panel' of markers together
- Very little DNA required
- Ability to handle mixtures and degraded samples
- Different fluorescent dyes used to distinguish alleles with overlapping size ranges

Established panels of microsatellites

- Human forensics/paternity
 - Promega PowerPlex

- Livestock and terrestrial species
 - Bovine Genotypes™ Panel 3.1
 - Canine Genotypes™ Panel 1.1
 - Equine Genotypes™ Panel 1.1

Why don't we have such panels in aquaculture species?

- Not so many top quality markers to choose from
- 2. Few concerted efforts to make highly optimised multiplexes

How to address this?

- 1. Use genome sequence data
 - No longer a shortage of markers to choose from
 - Tens to hundreds of thousands of microsatellites present
- 2. Use the same protocols/reagents as the optimised commercial panels

QDD pipeline using Atlantic salmon genome

BIOINFORMATICS APPLICATIONS NOTE

Vol. 26 no. 3 2010, pages 403-404 doi:10.1093/bioinformatics/btp670

Sequence analysis

QDD: a user-friendly program to select microsatellite markers and design primers from large sequencing projects

Emese Meglécz^{1,*}, Caroline Costedoat¹, Vincent Dubut¹, André Gilles¹, Thibaut Malausa², Nicolas Pech¹ and Jean-François Martin³

¹Aix-Marseille Université, CNRS, IRD, UMR 6116 – IMEP, Equipe Evolution, Génome et Environnement, Centre Saint-Charles, Case 36, 3 Place Victor Hugo, 13331 Marseille Cedex 3, 2 Institut National de la Recherche Agronomique, UMR 1301, INRA/UNSA/CNRS, Equipe BPI, 400, route des Chappes. BP 167. 06903 Sophia-Antipolis Cedex and ³Montpellier SupAgro, INRA, CIRAD, IRD, Centre de Biologie et de Gestion des Populations, Campus International de Baillarguet, CS30016, 34988 Montferrier-sur-Lez, France

Received on August 6, 2009; revised on November 24, 2009; accepted on December 1, 2009

Advance Access publication December 10, 2009

Associate Editor: Limsoon Wong

80 markers

Optimise multiplex primer design

Testing new markers with 'new generation' PCR reagents

- Genotyping efficiency critical if thousands of samples are to be genotyped rapidly
- Commercial genotyping kits use 'advanced' reagents

Q5 polymerase

- Extremely high fidelity (>100X higher than Taq)
- Robust high specificity and yield with minimal optimization
- Very fast (10 s/kb)
- 30-40 minute two-step PCR program

Example marker 1

Polymorphic

Quality

Example marker 2

Polymorphic

Quality

Example marker 3

Polymorphic

Quality

Wild fish sampling

Parentage assignment accuracy

Validation study

"Blind test" of parentage assignment using offspring from 230 Aqua
 Gen families (112 dams & 118 sires) + unrelated fish

Validation set	Assigned to 1 or more parent	% Correct according to pedigree
520 offspring from 230 AquaGen families	519 (99.8%)	97%
40 unrelated AquaGen fish	0	100%
88 wild salmon	0	100%

- 1 dam couldn't be genotyped
- 504 offspring assigned to 2 parents, 15 assigned to a single parent
- 1 fish couldn't be assigned
- No un-related farmed fish & wild fish could be assigned to parents.

«Bonus» validation study results

- 4 of the wild fish had unusual genotype patterns
 - Further testing showed these were Salmon X Trout hybrids
- 2 of the Aqua Gen offspring had 3 alleles at most microsatellites
 - Assigned to parents
 - Offspring inherited both copies of mother's genes
 + 1 copy of father's

Relatedness clustering with multiplex

- Wild hatchery-reared smolt
- Progeny from single pair crosses of 5 males and 5 females
- Average relateness within each cluster (family) = 50%

High-throughput

Example for 384 samples

DNA extraction

Crude method eg. Chelex

2 hours

PCR

Q5 polymerase + robotics

1 hour

Genotyping

ABI 3730xl capillary sequencer

4 hours

Logistical challenges

- Proposed tracing scheme will depend on sampling and genotyping of
 50.000+ samples per year
- Huge logistical challenge
- Methods and protocols are needed to ensure:
 - Efficient sampling of thousands of fish by workers with a range of skill levels
 - Secure tracking, handling and transport of samples
 - Adequate preservation of tissue for downstream analysis
 - High throughput DNA extraction and genotyping

Sampling and sample storage

- Individual barcoded tubes in rack format
 - Read ID directly into database, no human error
- Room temperature storage in ethanol
- Compatible with lab robotics
- 'Biopsy' sampling ensures consistent sample size and good yield

22.11.2013 25

Genotyping effective with 'poor quality' DNA

- Tested three commonly used methods
 - Microsatellite genotyping performed well with Chelex®
 - cheapest, quickest, "roughest" method

Ongoing work

- Validate multiplex performance in different laboratories
- Marker data (allele number and frequencies) being fed into simulations
 - Test power of marker set at industry wide level

Conclusions

- Thousands of new markers identified from the Atlantic salmon genome
- Efficient multiplex of 12 high quality markers developed
- Protocol optimised for high-throughput genotyping at low cost
- Very high assignment power and very good assignment rates achieved for breeding companies
- Challenge lies in scaling up to whole-industry level and the logistics of sampling, genotyping, egg tracking
 - Rigorous database needed

